Governance Deep Dive

How ContextGraph OS enforces governance at every layer.

The Governance Problem

Traditional AI systems have a fundamental governance gap:

What ExistsWhat's Missing
LogsAudit trails
PromptsProvenance
OutputsDecision traces
ConfigsPolicy enforcement

ContextGraph OS closes this gap by making governance a first-class architectural concern.

Governance by Construction

Principle 1: No Orphan Data

Every piece of data must have:

  • A source
  • A timestamp
  • A confidence level
  • A provenance record
// This is enforced at the type level
interface Claim {
  id: ClaimId;
  source: ProvenanceSource;      // Required
  confidence: Confidence;         // Required
  validFrom: Timestamp;           // Required
  provenanceId: ProvenanceId;     // Auto-generated
}

Principle 2: No Untraced Decisions

Every decision must be:

  • Recorded before execution
  • Evaluated against policies
  • Traceable to evidence
// Decision lifecycle is enforced
PROPOSED → APPROVED/REJECTED → EXECUTED → COMPLETED/FAILED
    │            │                │              │
    └────────────┴────────────────┴──────────────┘
                All states recorded

Principle 3: Deny-First Policy

The default answer is "no". Actions must be explicitly allowed.

# Default policy (implicit)
default:
  effect: deny
  reason: "No matching allow policy"

# Explicit allows override
explicit_allow:
  effect: allow
  subjects: [role:analyst]
  actions: [read]
  resources: [reports/*]

Principle 4: Time is Truth

Data is always qualified by time:

// Query: "What was the status on March 15?"
const claims = await ckg.query({
  entityId: projectId,
  asOf: createTimestamp('2024-03-15'),
});

// Returns claims valid on that date, not current claims

Governance Layers

Layer 1: Data Governance (CKG)

The Contextual Knowledge Graph enforces:

ConstraintEnforcement
Source requiredSchema validation
Temporal validityQuery filtering
Confidence scoresRetrieval ranking
ContradictionsExplicit handling

Layer 2: Action Governance (Policy Engine)

Every action is policy-evaluated:

Action Request
     │
     ▼
┌─────────────────────────────────────┐
│         Policy Evaluation           │
│                                     │
│  1. Find matching policies          │
│  2. Evaluate conditions             │
│  3. Apply deny-takes-precedence     │
│  4. Return decision + reasons       │
└─────────────────────────────────────┘
     │
     ├── ALLOW → Execute
     │
     └── DENY → Exception Queue (optional)
                      │
                      └── Human Review

Layer 3: Decision Governance (DTG)

All significant decisions tracked:

interface Decision {
  id: DecisionId;
  type: string;
  status: DecisionStatus;

  // Who proposed this?
  proposedBy: AgentId;
  proposedAt: Timestamp;

  // What evidence was used?
  evidenceIds: ClaimId[];

  // What policy evaluated it?
  policyEvaluation: PolicyResult;

  // Who approved/rejected?
  approvedBy?: AgentId;
  rejectedBy?: AgentId;

  // Full audit trail
  history: DecisionEvent[];
}

Layer 4: Audit Governance (Provenance)

Immutable, hash-chained records:

Entry 1 ──hash──► Entry 2 ──hash──► Entry 3
   │                │                 │
   └────────────────┴─────────────────┘
          Tamper-evident chain

Governance Workflows

Workflow 1: High-Risk Action Approval

sequenceDiagram
    participant Agent
    participant Policy
    participant Queue
    participant Human
    participant Executor

    Agent->>Policy: Request Action (risk=HIGH)
    Policy->>Policy: Evaluate policies
    Policy->>Queue: DENY (requires approval)
    Queue->>Human: Show decision + evidence
    Human->>Queue: APPROVE (with reason)
    Queue->>Executor: Execute action
    Executor->>Agent: Result

Workflow 2: Evidence-Weighted Decision

sequenceDiagram
    participant Agent
    participant CKG
    participant Reasoner
    participant Policy

    Agent->>CKG: Query claims for entity
    CKG->>Agent: Claims (with confidence)
    Agent->>Reasoner: Infer additional facts
    Reasoner->>Agent: Inferred facts
    Agent->>Policy: Request action
    Policy->>Policy: Check confidence thresholds
    Policy->>Agent: ALLOW (confidence >= 0.8)

Workflow 3: Compliance Audit

sequenceDiagram
    participant Auditor
    participant Compliance
    participant DTG
    participant Provenance

    Auditor->>Compliance: Generate Q4 report
    Compliance->>DTG: Query decisions (Q4)
    DTG->>Compliance: Decision records
    Compliance->>Provenance: Verify chain
    Provenance->>Compliance: Verification result
    Compliance->>Auditor: PDF report + evidence

Governance Metrics

Track governance health with these metrics:

MetricGoodWarningCritical
Policy deny rate<10%10-30%>30%
Approval latency<1hr1-24hr>24hr
Provenance chain valid100%-<100%
Decision trace coverage100%95-99%<95%

Next Steps